909

Novel 1,1'- and 1,3-Disubstituted Ferrocene-containing Thermotropic Liquid Crystals: A Remarkable Isomeric Effect

Robert Deschenaux* and Jean-Luc Marendaz

Université de Neuchâtel, Institut de Chimie, Av. de Bellevaux 51, 2000 Neuchâtel, Switzerland

Comparison of results obtained from 1,1'- and 1,3-disubstituted ferrocenes clearly demonstrates the influence of structural isomerism on the mesomorphic properties.

There is currently considerable interest in metallomesogens owing to their unique properties¹ and potential applications² in electronic technology. Among all the metal-containing liquid crystals reported thus far, little attention has been focused on thermotropic metallocenes.³ This is surprising since metallocenes have a high thermal stability and are very soluble in common organic solvents, making their characterization straightforward. In addition, they possess a 3-dimensional structure which offers multiple possibilities of forming derivatives for fine tuning of the mesomorphic properties.

We report herein the preparation and mesogenic behaviour of ferrocenes substituted in the 1,1'- and 1,3-positions. To our knowledge, 1,3-disubstituted ferrocene-containing thermotropic liquid crystals have not previously been described. Compounds **1a–c** and **2a–d** were obtained by condensing either the ferrocene 1,1'-diacid chloride⁴ or the ferrocene 1,3-diacid chloride⁵ with various phenol derivatives [4-(4'-nalkoxybenzoyloxy)phenol⁶ and 4'-n-hexyloxybiphenyl-4-ol].⁷

The syntheses were performed in CH_2Cl_2 at reflux, in the presence of triethylamine. Crystallization from CH_2Cl_2 -MeOH afforded the pure solids in 75–80% yield. The ¹H NMR spectra and microanalyses for all these new compounds are in agreement with the proposed structures. The transition temperatures and enthalpies are presented in Table 1.

Table 1 Transition temperatures of complexes 1 and 2

Complex	Transition ^a	T/⁰C	$\Delta H/kJ mol^{-1b}$
1a ^d	$C \rightarrow I \\ (I \rightarrow N)^c$	172 (153)	40.8 (3.0)
1b	C→I	169	46.0
1c	C→I	167	63.3
2a ^d	$\begin{array}{c} C \rightarrow N \\ N \rightarrow I \end{array}$	184 248	40.5 4.8
2b ^d	$\begin{array}{c} C \rightarrow N \\ N \rightarrow I \end{array}$	183 217	53.5 4.3
2c ^{<i>d</i>}	$\begin{array}{c} C \rightarrow N \\ N \rightarrow I \end{array}$	172 206	42.1 3.8
2d ^{<i>d</i>}	$\begin{array}{c} C \rightarrow N \\ N \rightarrow I \end{array}$	204 235	58.5 3.4

^{*a*} Observed on a Zeiss Axioscopo polarizing microscope equipped with a Linkam THMS 600 variable temperature stage. ^{*b*} Measured on a Mettler DSC-30 from the second heating cycle at a rate of 10 °C min⁻¹. ^{*c*} Monotropic transition. ^{*d*} Nematic droplets were observed near the I \rightarrow N transition on cooling slowly (5 °C min⁻¹) from the isotropic melt.

None of the 1,1'-disubstituted compounds **1a**-c exhibited liquid crystal properties on heating. They clearly and directly melted into an isotropic liquid. However, a monotropic

nematic phase was observed for **1a**. Insufficient supercooling of the isotropic melt probably prevented **1b** and **1c** from forming mesophases.

Remarkable thermotropic properties resulted from the 1,3-isomeric structures. Indeed, ferrocene derivatives 2a-c not only showed enantiotropic behaviour, but they also gave rise, in each case, to a wide nematic phase: $64 \,^{\circ}C(2a)$, $34 \,^{\circ}C(2b)$ and $34 \,^{\circ}C(2c)$. Compound 2d,[†] containing a biphenyl system, also led to a stable enantiotropic nematic phase (31 $^{\circ}C$). This demonstrates that the capability of the 1,3-disubstituted structure for forming thermotropic materials could be generalized to a variety of rigid organic moieties.

We thank Ciba-Geigy Ltd and the Swiss National Science Foundation for financial support.

Received, 19th March 1991; Com. 1/01322J

References

- C. Bertram, D. W. Bruce, D. A. Dunmur, S. E. Hunt, P. M. Maitlis and M. McCann, J. Chem. Soc., Chem. Commun., 1991, 69; J. L. Serrano, P. Romero, M. Marcos and P. J. Alonso, J. Chem. Soc., Chem. Commun., 1990, 859, and references therein.
- 2 C. Piechocki, J. Simon, A. Skoulios, P. Guillon and P. Weber, J. Am. Chem. Soc., 1982, 104, 5254; D. W. Bruce, D. A. Dunmur, E. Lalinde, P. M. Maitlis and P. Styring, Nature, 1986, 326, 791.
- 3 Monosubstituted ferrocene derivatives: (a) J. Malthête and J. Billard, *Mol. Cryst. Liq. Cryst.*, 1976, **34**, 117. Ferrocenes substituted in the 1,1'-positions: (b) J. Bhatt, B. M. Fung, K. M. Nicholas and C.-D. Poon, *J. Chem. Soc., Chem. Commun.*, 1988, 1439; (c) P. Singh, M. D. Rausch and R. W. Lenz, *Liq. Cryst.*, 1991, **9**, 19.
- 4 F. W. Knoblock and W. H. Rauscher, J. Polymer. Sci., 1961, 54, 651.
- 5 M. Hisatome, O. Tachikawa, M. Sasho and K. Yamakawa, J. Organomet. Chem., 1981, 217, C17; A. Kasahara, T. Izumi, Y. Yoshida and I. Shimizu, Bull. Chem. Soc. Jpn., 1982, 55, 1901.
- 6 S. A. Haut, D. C. Schroeder and J. P. Schroeder, J. Org. Chem., 1972, 37, 1425.
- 7 P. Keller and L. Liebert, in *Liquid Crystal Synthesis for Physicists*, ed. L. Liebert, Academic Press, New York, 1978.

[†] The corresponding 1,1'-isomer^{3b} gave a monotropic S_c transition associated with a very narrow anisotropic range (7 °C).